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Abstract A discussion about the classical Coulomb repulsion via point-like nuclear
charges, usually employed within Born–Oppenheimer approximation, leads to the
description of Dirac paradox: an inconsistency found when describing nuclear charges
by means of Dirac’s distributions and computing with them nuclear Coulomb repul-
sion integrals. The way of overcoming Dirac paradox is bound to the description
of soft Gaussian nuclear charge density and also to adopting a nuclear hypermulti-
plet Coulomb repulsion formulation. Such theoretical prospect produces a quantum
mechanically compliant but simple algorithm in order to compute nuclear repulsion,
which also appears to be consistently related to classical Coulomb repulsion energy,
while avoiding singularities when nuclei collapse.

Keywords Point-like nuclear charges · Molecular Coulomb classical nuclear
repulsion · Soft Gaussian nuclear charge density · Dirac paradox · Hypermultiplet
quantum mechanical nuclear Coulomb repulsion

1 Introduction

Coulomb nuclear repulsion and Born–Oppenheimer approximation When generally
describing any molecule in classical quantum chemistry under the Born–Oppenheimer
approximation [1] and also in current molecular mechanics, nuclei are considered as
a set of point-like positive charges, distributed in some frozen configuration in three
dimensional (3D) space.
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In order to discuss some way to complement the study of molecular structures,
suppose that a set of N atoms is known, their associated atomic charges forming the
set of positive numbers: Z = {Z I |I = 1, N } and finally the configuration centers
where the nuclei are placed in 3D space might be represented by the set of 3D real
vectors: C = {RI |I = 1, N } ⊂ R3.

Then, the attached Coulomb repulsion is customarily computed in terms of the
interatomic distances matrix, D = {RI J = |RI − RJ | |I, J = 1, N }, as:

EC = 1

2

∑

I

∑

J

δ [I �= J ]
Z I Z J

RI J
(1)

and added to the electronic energy to obtain the molecular internal energy. In Eq. (1)
use is made of a logical Kronecker’s delta, δ [L], where L is a logical expression which
is subject to the convention: δ [.T .] = 1 ∧ δ [.F.] = 0.

The mainstream of quantum chemical molecular calculations systematically
employs the classical point-like nuclear charges equation (1) to compute nuclear repul-
sion and to obtain in this way the total molecular energy.

It is curious to note now the obvious fact that nowadays one is facing quite sophisti-
cated procedures to solve Schrödinger equation, while at the end of the computational
process appears that it is added to the quantum mechanical electronic energy result,
a trivial classically bound nuclear term like the one in Eq. (1). Thus, there seems
interesting and reasonable to try refining such a simple nuclear repulsion algorithm,
attempting to transform it into a similar one, but formulated within a more adequate
quantum mechanical formalism.

2 Dirac nuclear charge density distribution

A reflection over the usual point-like Coulomb repulsion, which is systematically
used when molecular total energies are computed, might lead first to the proposal of
a nuclear charge density, which can be provisionally based on Dirac 3D distributions
centered at each nucleus:

∀I = 1, N : σI (R) = δ (R − RI )→ 〈σI 〉 =
∫ +∞

−∞
δ (R − RI ) dR = 1 (2)

Such nuclear functions can be considered as nuclear shape functions and can be
easily transformed into nuclear charge densities, just scaling them by the atomic num-
bers:

∀I = 1, N : ρD
I (R) = Z IσI (R) . (3)

Summing up the nuclear charge densities described in this way, a total Dirac nuclear
charge density ρD (R) like:

ρD (R) =
∑

I

ρD
I (R) =

∑

I

Z IσI (R) (4)
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can be constructed for any molecule in any conformation. The Minkowski norm of
the Dirac nuclear charge density as constructed in Eq. (4) provides the total number
of charges vcontained into the molecule:

∫

V
ρD (R) dR = 〈ρD〉 =

∑

I

Z I 〈σI 〉 =
∑

I

Z I = v.

The continuous Dirac nuclear density function as described above, which
apparently provides a quantum approximation to the nuclear charge distribution in
any molecular conformation, can be added to the usual quantum mechanical elec-
tronic density: ρe (r), yielding a total molecular charge density function, which might
be written as:

ρ (r,R) = ρe (r)+ ρD (R) . (5)

3 Dirac’s paradox

However, proceeding in this way to obtain a formal quantum mechanical global charge
density (5), a puzzling situation is encountered when trying to use the nuclear charge
density, by means of nuclear Dirac distributions:ρD (R), as defined in Eq. (4), when
computing any Coulomb nuclear repulsion calculation.

The anomaly which can be named Dirac’s Paradox appears when a smooth con-
tinuous density function is built up as in Eq. (4), via a superposition of Dirac nuclear
charge distributions defined as in (3). Such Dirac nuclear density can be furthermore
used to compute the Coulomb repulsion using an appropriate electrostatic interaction
integral:

ED =
∫

V

∫

V
ρD

(
R′

)
ρD

(
R′′

) ∣∣R′ − R′′
∣∣−1

dR′dR′′. (6)

Substitution of the nuclear density (4) into the integral (6) trivially leads to an
expression formed by a double sum of diatomic terms, which can be written as:

ED =
∑

I

∑

J

Z I Z J

∫

V

∫

V
σI

(
R′

)
σJ

(
R′′

) ∣∣R′ − R′′
∣∣−1

dR′dR′′ (7)

and these diatomic integrals, when two atoms are not coincident, produce the associ-
ated point-like Coulomb repulsion terms written as in Eq. (1):

∀I, J : Z I Z J

∫

V

∫

V
σI

(
R′

)
σJ

(
R′′

) ∣∣R′ − R′′
∣∣−1

dR′dR′′

= Z I Z J

∫

V

∫

V
δ
(
R′ − RI

)
δ
(
R′′ − RJ

) ∣∣R′ − R′′
∣∣−1

dR′dR′′

= Z I Z J |RI − RJ |−1

However, proceeding in this way, a set of selfrepulsion contributions appear, which
produce a set of infinity values. As many as atoms included within the molecular
frame, because in the diagonal of the summations in Eq. (7) one will necessarily find:

123



J Math Chem (2015) 53:590–603 593

∀I = 1, N : Z2
I |RI − RI |−1 . (8)

Therefore, a nuclear continuous density function, which apparently corresponds
to a point-like atomic charge distribution as in Eq. (4), can be easily constructed.
However, within the corresponding continuous electrostatic context, its use produces
in the double summation of Eq. (7) the appearance of divergent diagonal terms. As an
extra problem appearing in addition, a double contribution of the off-diagonal elements
is also included in the Eq. (7).

Evidently, a correct version of Eq. (7) can be described, just modifying the resultant
electrostatic expression, which could be formally transformed into a similar structure
as the one in Eq. (1), which can be written as:

EC = 1

2

∑

I

∑

J

δ [I �= J ] Z I Z J

∫

V

∫

V
σI

(
R′

)
σJ

(
R′′

) ∣∣R′ − R′′
∣∣−1

dR′dR′′. (9)

Nonetheless, even if the correct point-like Coulomb form (1) is recovered, one must
be aware that there is present some inconsistency derived from Eq. (6), which must
be corrected transforming it as Eq. (9). Then, after this a posteriori handling, both
Eqs. (1) and (9) become the same.

In the author’s opinion, such inconsistent scenery provides the logical structure of
Dirac’s Paradox, which can be more precisely stated as follows. Whenever a set of
point-like charges arbitrarily situated in 3D space and, in order to obtain a quantum
mechanical adequate description of the nuclear charge distribution, then when it is rep-
resented by a continuous charge density distribution, using a superposition of Dirac’s
functions, at this moment some anomalies appear in the Coulomb expression of the
electrostatic repulsion. Such inconsistency can be avoided manipulating afterwards
the resultant electrostatic expression accordingly.

Thus, it seems interesting that some research can be performed, just to obtain
an expression for the nuclear density and the implicit electrostatic repulsion, which
overcomes Dirac’s paradox. The present study will try to find out one plausible way
to accomplish this viewpoint.

4 Soft Gaussian nuclear density

While classical quantum chemistry keeps considering nuclear charges as point-like,
in relativistic quantum chemistry the use of finite nuclear structures is widespread, as
the encyclopedic work of Andrae [2] shows. What follows has been inspired by one
of the multiple options which the work of Andrae describes.

Attempting the resolution of Dirac’s paradox, has lead first to the definition of a soft
Gaussian nuclear charge distribution, then to the construction of a Coulomb nuclear
repulsion in several previous papers [8–10]. Such new nuclear density function avoids
the typical divergences, encountered when two nuclei coincide in the same point of
3D space. However, the final result still contains terms of selfrepulsion, which have
not an obvious theoretical explanation. All these issues will be discussed below.
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For a given molecule with a set of fixed coordinates, one can write the atomic
positions in a general way with a real 3D vector set like: C = {RI |I = 1, N } ⊂ R3,
as constructed at the beginning. Then, at each nucleus can be centered a Minkowski
normalized Gaussian function, which can be defined as follows:

∀I = 1, N : γI (R) = γ (θ |R − RI ) =
(
θ

π

) 3
2

exp
(
−θ |R − RI |2

)
,

→ 〈γI 〉 =
∫

V
γ (θ |R − RI ) dR = 1 (10)

where θ is an appropriate exponent for the nuclear Gaussian charge distribution, which
can be assumed equivalent for any nucleus. Such a set of functions can be considered
as a soft nuclear shape function set. In contrast of the Dirac’s shape functions described
in Eq. (2), which could be named as sharp nuclear charge distributions. Multiplying
each Gaussian shape function by the nuclear charge yields the set of soft Gaussian
nuclear charge densities:

∀I = 1, N : ρS
I (R) = Z Iγ (θ |R − RI ) .

The superposition of these charge densities can be used to construct the total soft
Gaussian nuclear charge density:

ρS (R) =
∑

I

ρS
I (R) =

∑

I

Z Iγ (θ |R − RI ) =
∑

I

Z IγI (R) , (11)

The total soft Gaussian nuclear density constitutes a simple expression, which can
be also seen as a linear combination referred to a set of Gaussian space enfoldment
points [3,4]. On the other hand, such a nuclear soft density representation is directly
related with the so-called promolecular electronic density and the ASA [5–7] simpli-
fied representation of the molecular electronic density functions.

The above expression (11) possesses a Minkowski norm equal to the number of
charges v contained into the considered molecule, in the same way as Dirac nuclear
density defined in Eq. (4), that is:

〈ρS〉 =
∑

I

〈
ρS

I

〉
=

∑

I

Z I 〈γI 〉 =
∑

I

Z I = v.

Moreover, due to the property of Gaussian functions to transform into a Dirac
distribution when the exponent becomes infinity, that is:

lim
θ→∞ γ (θ |R − RI ) = δ (R − RI ) ,

then one can easily deduce that the soft Gaussian nuclear density transforms into a
Dirac nuclear density in the same manner:

lim
θ→∞ ρS (R) = ρD (R) .
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Therefore, choosing the total soft Gaussian nuclear charge density written as in
Eq. (11), the limit of the exponent when it goes to infinity is the Dirac nuclear density
as described in Eq. (4).

5 Soft Coulomb nuclear repulsion energy

The possible expression of the nuclear repulsion by means of Dirac distributions of
nuclear charges and the attached paradox previously discussed, leads to consider the
transformation of the terms of Eq. (6) into a general but more flexible formulation
devoid of paradoxes.

This construct is such that it might be called: soft nuclear repulsion electrostatic
energy. In a similar way as it has been recently proposed for the definition of soft
electrostatic molecular potentials (SEMP) [8,9] and described in a general molecular
context [10]. In this general but malleable framework, the divergent terms present
as Eq. (8) shows, they could be transformed into conformationally invariant finite
constants, thus solving in this manner the nuclear repulsion Dirac paradox, but adding
the necessity of interpret the meaning of such a constant presence in soft nuclear
repulsion expressions.

Generalizing a previous result on atoms by Weinstein et al. [11], recently it has been
shown that the electronic MEP, generated by an electronic density written similarly
as Eq. (11), in the framework of polyatomic molecules, becomes everywhere positive
[8]. Despite of this drawback, the electronic MEP generated by both a polarized ASA
density and a soft nuclear potential preserves the classical MEP structure, while elim-
inating the atomic infinities [9] of the classical customary calculations. Obviously
enough, in the present case of soft Gaussian nuclear densities it is not a drawback
to realize that the soft Gaussian nuclear charge distribution and a possible potential
generated by it is everywhere positive, as one is trying to describe the positive nuclear
charge distribution.

Dirac’s delta functions can be considered the limit of some Minkowski normalized
Gaussian function, as it has been commented beforehand, then, after considering this
straightforward development, the soft nuclear repulsion energy for any molecule can
be proposed to be evaluated with the following expression, equivalent to Eq. (6):

ES =
∫

V

∫

V
ρS

(
R′

)
ρS

(
R′′

) ∣∣R′ − R′′
∣∣−1

dR′dR′′

and after taking into account the definition of the soft Gaussian nuclear density as
written in Eq. (11) it can be also written:

ES =
∑

I

∑

J

Z I Z J

∫

D

∫

D

∣∣R′ − R′′
∣∣−1
γ

(
θ |R′ − RI

)
γ

(
θ |R′′ − RJ

)
dR′dR′′.

(12)
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6 Incomplete gamma and error functions expression of the soft Gaussian
nuclear repulsion terms

The two atom contribution terms formed by integrals scaled by the nuclear charges
found in Eq. (12), can be easily obtained as functions of the internuclear distances:
D = {RI J = |RI − RJ | |I, J = 1, N }.

6.1 Incomplete gamma function expression

For example, through Saunders exhaustive description [12] of Gaussian function mole-
cular integrals, they can be easily written as:

∀I, J = 1, N : E S
I J (RI J ) = 2Z I Z J

(
θ

2π

) 1
2

F0

(
θ

2
R2

I J

)
, (13)

where F0 (x) corresponds to the zeroth order incomplete gamma function.
Equation (12) will be indeed everywhere positive, but contrarily to the usual nuclear

repulsion energy, do not possess singularity values when nuclei collapse and coincide
in space, because F0 (0) = 1, and therefore:

∀I = 1, N : E S
I I (0) = 2Z2

I

(
θ

2π

) 1
2

.

Such a feature is quite interesting to be taken into account, when considering the
systematic generation of molecular total potential energy surfaces in any kind of auto-
matic computational structure.

6.2 Error function expression

The resultant soft nuclear repulsion energy can be also equivalently written in terms
of the error function. As the incomplete gamma function and the error function are
related by means of the following equality [12]:

F0 (x) =
∫ 1

0
e−xt2

dt = 1

2

√
π

x
er f

(√
x
)
,

then, the soft nuclear repulsion term as expressed in Eq. (13) can be also alternatively
written by means of the error function:

∀I, J = 1, N : E S
I J =

Z I Z J

RI J
er f

((
θ

2

) 1
2

RI J

)
.

Expressed in this way, the soft nuclear repulsion terms can be easily interpreted
as a classical point-like Coulomb element: Z I Z J R−1

I J , weighted by the error function
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term. Because the error function values belong to the unit interval: [0, 1], then the
soft nuclear repulsion term can be observed as a Coulomb element, which can be less
repulsive than the classical one, the percentage difference ratio being related to the
error function.

7 Hypermultiplet form of the soft repulsion energy

Next, in order to refine the Coulomb repulsion model based on soft Gaussian nuclear
charge density, one can inspect the electronic repulsion part in hypermultiplet cases,
as defined in reference [14], that is: the repulsion energy expression in sets of particles
with spin, where all the spins are not coupled. The particle set can be described by
means of a wave function made by a unique Slater determinant with all the particles
being chosen with alpha or beta spin functions. In fact, this situation also reminds of
the theory of ferromagnetism described by Heisenberg [15], which has been set up in
the early stages of quantum mechanics development, provided here as an old previous
example of such a possible similar situation with a set of several nuclei.

The resulting electronic repulsion energy expression for hypermultiplets in MO
theory can be written easily as [14]:

ER = 1

2

∑

P

∑

Q

(
JP Q − K P Q

)
(14)

where the sums run over all the singly occupied MO’s and
{

JP Q
}
,
{

K P Q
}

cor-
respond to the Coulomb and exchange integrals, see for example reference [16],
computed over the MO set. Expression (14) can be written by means of the hyper-
multiplet electronic density defined as a superposition over a real MO density set:{
ρP Q

(
r′, r′′

) = ψP
(
r′

)
ψQ

(
r′′

) |P, Q = 1,M
}
:

ρe (r) = ρe (r, r) =
∑

P

ρP P (r, r) =
∑

P

|ψP (r)|2

and the electronic repulsion can be described by means of the integrals:

ER = 1

2

∑

P

∑

Q

(〈
ρP P

(
r′, r′

) ∣∣r′ − r′′
∣∣−1

ρQ Q
(
r′′, r′′

)〉

−
〈
ρP Q

(
r′, r′′

) ∣∣r′ − r′′
∣∣−1

ρP Q
(
r′, r′′

)〉)
.

Equation (14) permits to reconsider the calculation of the nuclear repulsion based
in soft Gaussian nuclear density in a similar way. Using these considerations, then a
final expression of the soft nuclear repulsion can be set up, where the final equation
appearance appears devoid of paradoxes, selfrepulsion terms are avoided and therefore
singularities at atomic collapse are entirely circumvented.

Using the Minkowski normalized Gaussian function, as already described in
Eq. (10), it is easy to realize that it can be rewritten in terms of the normalization
factor by the Gaussian function itself:
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γ (θ |R − RI ) =
(
θ

π

) 3
2

exp
(
−θ |R − RI |2

)

=
(
θ

π

) 3
2

g (θ |R − RI ) = M (θ) g (θ |R − RI )

Then one can suppose that the Coulomb expression of nuclear repulsion will have
an exchange term, like in the hypermultiplet molecular electronic part of Eq. (14).
So, each repulsion pair contribution could be written using a mixed Gaussian term.
That is, defining the Coulomb part as the integral, where the Minkowski norm squared
appears to be a global scale factor:

EC
I J = (I I |J J )

= Z I Z J M2 (θ)

[∫

D

∫

D

∣∣R′ − R′′
∣∣−1

g
(
θ |R′ − RI

)
g

(
θ |R′′ − RJ

)
dR′dR′′

]

This is the same in fact as Eq. (13), thus it can be written:

∀I, J = 1, N : EC
I J (RI J ) = 2Z I Z J

(
θ

2π

) 1
2

F0

(
θ

2
R2

I J

)

To obtain the exchange terms one can start taking into account now that any Gaussian
function can be easily written as a split product:

exp
(
−θ |R − RI |2

)
= exp

(
−θ

2
|R − RI |2

)
exp

(
−θ

2
|R − RI |2

)

This simple property can be also used to write an exchange of the charge variable
in the following way:

G

(
θ

2

∣∣∣∣ R′;RI ;RJ

)
= g

(
θ

2

∣∣∣∣ R′ − RI

)
g

(
θ

2

∣∣∣∣ R′ − RJ

)

and

G

(
θ

2

∣∣∣∣ R′′;RI ;RJ

)
= g

(
θ

2

∣∣∣∣ R′′ − RI

)
g

(
θ

2

∣∣∣∣ R′′ − RJ

)

But taking into account that when: RI = RJ then the double centered functions
become the original one. For example:

G

(
θ

2

∣∣∣∣ R′;RI ;RI

)
= g

(
θ |R′ − RI

) ∧ G

(
θ

2

∣∣∣∣ R′′;RJ ;RJ

)
= g

(
θ |R′′ − RJ

)
,
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then it can be also written an exchange term as:

E E
I J = (I J |I J )

= Z I Z J M2 (θ)

[∫

D

∫

D

∣∣R′ − R′′
∣∣−1

G

(
θ

2

∣∣∣∣ R′;RI ;RJ

)

× G

(
θ

2

∣∣∣∣ R′′;RI ;RJ

)
dR′dR′′

]

When looking for the monocentric contributions, that is when I = J , then the
difference between both integral contributions will become null, as the following
equality holds:

∫

D

∫

D

∣∣R′ − R′′
∣∣−1

G

(
θ

2

∣∣∣∣ R′;RI ;RI

)
G

(
θ

2

∣∣∣∣ R′′;RI ;RI

)
dR′dR′′

=
∫

D

∫

D

∣∣R′ − R′′
∣∣−1
γ

(
θ |R′ − RI

)
γ

(
θ |R′′ − RI

)
dR′dR′′

So, the selfrepulsion terms will be null and do not contribute to the repulsion energy
in this nuclear hypermultiplet framework. As the product of two Gaussian functions
centered at two different sites is another function centered in this case at the midpoint,
one can write in general:

G

(
θ

2

∣∣∣∣ R′;RI ;RJ

)
= g

(
θ

2

∣∣∣∣ R′ − RI

)
g

(
θ

2

∣∣∣∣ R′ − RJ

)

= exp

(
−θ

4
|RI − RJ |2

)
g

(
θ |R′ − P

)← P = 1

2
(RI + RJ )

Therefore, using the same transformation for the second charge coordinate, the
exchange term can be written in fact as a monocentric Coulomb repulsion:

(I J |I J ) = Z I Z J M2 (θ) exp

(
−θ

2
|RI − RJ |2

)

∫

D

∫

D

∣∣R′ − R′′
∣∣−1

g
(
θ |R′ − P

)
g

(
θ |R′′ − P

)
dR′dR′′,

which can be evaluated in a similar way as the Coulomb terms, see again reference
[12], but taking into account that the integral is monocentric, yielding:

(I J |I J ) = Z I Z J

(
θ

π

)3

exp

(
−θ

2
|RI − RJ |2

)
2π

5
2

θ2
√

2θ

= Z I Z J

(
2θ

π

) 1
2

exp

(
−θ

2
|RI − RJ |2

)
= Z I Z J

(
2θ

π

) 1
2

exp

(
−θR2

I J

2

)
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Therefore, the final two center hypermultiplet nuclear repulsion terms can be written
in terms of the incomplete gamma function as:

∀I, J = 1, N : E H
I J (RI J ) = Z I Z J

(
2θ

π

) 1
2
[

F0

(
θ

2
R2

I J

)
− exp

(
−θR2

I J

2

)]

where one can easily see that:

∀I = 1, N : E H
I I (0) = 0.

Then, in fact, the hypermultiplet soft Gaussian nuclear repulsion can be written
using the final expression:

EH = 1

2

∑

I

∑

J

E H
I J =

1

2

(
2θ

π

) 1
2 ∑

I

∑

J

Z I Z J

[
F0

(
θ

2
R2

I J

)
− exp

(
−θR2

I J

2

)]
.

(15)
Despite of the inclusion of diagonal terms, which now do not contribute due they

are null, and although off-diagonal elements are twice repeated the whole formulation
is naturally half scaled, therefore the above Eq. (15) is devoid of inconsistencies and
completely equivalent to the simplified form, which appears without any manipulation
to be also written as:

EH =
∑

I

∑

J

δ [I < J ] E H
I J .

In this sense, one can say that the use of Eq. (15) becomes equivalent to substituting
the point-like charges of two distinct center Coulomb terms by the hypermultiplet
repulsion ones:

∀I = 1, N − 1 ∧ J = I + 1, N : Z I Z J

RI J
⇒ E H

I J .

Moreover, due to the existence of the recursive formula [12], see “Appendix”, which
relates incomplete gamma functions, it can be also possible to write equation (15) in
terms of the incomplete gamma function of the first order:

EH = θ
(
θ

2π

) 1
2 ∑

I

∑

J

Z I Z J R2
I J F1

(
θ

2
R2

I J

)
.

8 Discussion of the results

It has been described first how the connection of classical Coulomb nuclear repul-
sion, associated to point-like charges, when compared with Dirac distributions of
nuclear charges, which apparently must mimic the former repulsion formula, appears
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providing inconsistent results. Dirac’s nuclear density can be seen as a quantum
mechanical continuous description of point-like nuclear charges, but if used into a
Coulomb repulsion integral calculation, some anomalies result, which can be easily
correcteda posteriori to provide the usual classical result. This situation has been
named here the Dirac paradox. However, such a manipulation appears to be not com-
pletely satisfactory, even if providing an equivalent expression to the classical Coulomb
one.

On the way to overcome Dirac’s paradox, an idea, borrowed from relativistic
quantum chemistry, has been employed. Such procedure has been previously tested
to obtain molecular electrostatic potentials devoid of atomic singularities, provid-
ing satisfactory results. The procedure consists on substituting point-like nuclear
charges by defining Gaussian nuclear charge distributions, or soft nuclear charge
densities. Afterwards, a continuous molecular charge density from their superposi-
tion is straightforwardly constructed. In this way the nuclear singularities disappear
from the Coulomb repulsion integral. Nevertheless, conformationally invariant terms,
which present some need to be interpreted as positive zero global energy levels, do
appear.

Because in the definition of soft Gaussian nuclear charge density still some incon-
sistency is present when Coulomb repulsion is evaluated, even if the proposed soft
density appears more adequate to quantum mechanical description of nuclear charges,
further thinking has been put forward in order to get rid of any problem.

In order to obtain a fully consistent description of Coulomb repulsion via a soft
nuclear charge density, it has been further introduced a hypermultiplet Coulomb repul-
sion model of the nuclear spins. Such a model, which reminds of the Heisenberg
ferromagnetism, can be easily attached to the individual Gaussian nuclear charge dis-
tributions. Providing in this manner an easily implemented computational structure,
which is compliant to a quantum mechanical scope, producing a resultant nuclear
Coulomb repulsion which has been taking into account nuclear spins, generating a
result devoid of Dirac paradox and consistent with the classical nuclear Coulomb
repulsion form.

Also, as one of the referees has pointed out, the theoretical foundations and the
practical algorithms developed in this paper can be related first to the generalized DFT
[18] framework, where nuclear point like charges appear not adequate, and second
provide with a possible refinement of the conceptual DFT treatment of molecular
electrostatic potentials [19,20], where the potential singularities have to be eliminated
by hand.

Finally, at the light of the present theoretical development, related to the soft
Coulomb nuclear repulsion and described in terms of a hypermultiplet energy expres-
sion, one might conclude that classical Coulomb repulsion perhaps can be observed
as corresponding to some kind of simplified version of an involved quantum mechan-
ical description of the repulsion energy, associated to nuclei forming molecular
frames.
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9 Appendix

9.1 Incomplete gamma function

A set of polynomial expressions to accurately compute the incomplete gamma func-
tions needed here was published by Arents [17]. Also, knowing any higher order term,
then a unit order inferior function can be easily obtained by means of the descending
iteration [11]:

Fp (x) = 1

2p + 1

(
2x Fp+1 (x)+ e−x)

Then, one can also write:

F0

(
θ

2
R2

I J

)
− exp

(
−θR2

I J

2

)
= θR2

I J F1

(
θ

2
R2

I J

)

9.2 Derivatives

Derivatives of the incomplete gamma function and error function are not at all difficult
to obtain. They can be useful for general geometry optimization purposes.

A of the incomplete gamma function

The derivatives of the incomplete gamma function of any order can be expressed [12]
in terms of the incomplete gamma function of a unit superior order:

∂Fp (x)

∂x
= −Fp+1 (x) .

B of the error function

Derivatives of the error function are readily computed in terms of Hermite polynomials
[13]:

∀n = 0, 1, 2, . . . : dn+1

dxn+1 er f (x) = (−1)n
2√
π

Hn (x) e−x2
.

Thus, the first derivative term, owing to the fact that also: H0 (x) = 1 holds, corre-
sponds to:

d

dx
er f (x) = 2√

π
e−x2

.
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